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Universitätsstr. 1, Gebäude 25.22, D-40225 Düsseldorf, Germany.
koehler@math.uni-duesseldorf.de

Summary. We describe a tautological subring in the arithmetic Chow ring of bases
of abelian schemes. Among the results are an Arakelov version of the Hirzebruch
proportionality principle and a formula for a critical power of ĉ1 of the Hodge bundle.
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1 Introduction

The purpose of this note is to exploit some implications of a fixed point for-
mula in Arakelov geometry when applied to the action of the (−1) involution
on abelian schemes of relative dimension d. It is shown that the fixed point
formula’s statement in this case is equivalent to giving the values of arithmetic
Pontrjagin classes of the Hodge bundle E := (R1π∗O, ‖ · ‖L2)∗, where these
Pontrjagin classes are defined as polynomials in the arithmetic Chern classes
defined by Gillet and Soulé. The resulting formula (see Theorem 3.4) is

p̂k(E) = (−1)k

2ζ ′(1− 2k)
ζ(1− 2k)

+
2k−1∑
j=1

1
j
− 2 log 2

1− 4−k

 (2k − 1)! a(ch(E)[2k−1])

(1)
with the canonical map a defined on classes of differential forms. When com-
bined with the statement of the Gillet-Soulé’s non-equivariant arithmetic Gro-
thendieck-Riemann-Roch formula ([GS8],[Fal]), one obtains a formula for the
class ĉ1+d(d−1)/2

1 of the d-dimensional Hodge bundle in terms of topological
classes and a certain special differential form γ (Theorem 5.1), which repre-
sents an Arakelov Euler class. Morally, this should be regarded as a formula
for the height of complete cycles of codimension d in the moduli space (but
the non-existence of such cycles for d ≥ 3 has been shown by Keel and Sadun
[KS]). Still it might serve as a model for the non-complete case. Finally we de-
rive an Arakelov version of the Hirzebruch proportionality principle (not to be
confused with its extension by Mumford [M]), namely a ring homomorphism
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from the Arakelov Chow ring CH∗(Ld−1) of Lagrangian Grassmannians to the
arithmetic Chow ring of bases of abelian schemes ĈH∗(B) (Theorem 5.5):

Theorem 1.1. Let S denote the tautological bundle on Ld−1. There is a ring
homomorphism

h: CH∗(Ld−1)Q → ĈH∗(B)Q/(a(γ))

with

h(ĉ(S)) = ĉ(E)

(
1 + a

(
d−1∑
k=1

(
ζ ′(1− 2k)
ζ(1− 2k)

− log 2
1− 4−k

)(2k − 1)!ch[2k−1](E)

))
and

h(a(c(S))) = a(c(E)) .

In the last section we investigate the Fourier expansion of the Arakelov Euler
class γ of the Hodge bundle on the moduli space of principally polarized
abelian varieties.

A fixed point formula for maps from arithmetic varieties to Spec D has
been proven by Roessler and the author in [KR1], where D is a regular arith-
metic ring. In [KR2, Appendix] we described a conjectural generalization to
flat equivariantly projective maps between arithmetic varieties over D. The
missing ingredient to the proof of this conjecture was the equivariant version
of Bismut’s formula for the behavior of analytic torsion forms under the com-
position of immersions and fibrations [B4], i.e., a merge of [B3] and [B4]. This
formula has meanwhile been shown by Bismut and Ma [BM].

There is insofar a gap in our proof of this result (Conjecture 3.2), as we
give only a sketch. While our sketch is quite exhaustive and provides a rather
complete guideline to an extension of a previous proof in [KR1] to the one
required here, a fully written up version of the proof would still be basically
a copy of [KR1] and thus be quite lengthly. This is not the subject of this
article.

We work only with regular schemes as bases; extending these results
to moduli stacks and their compactifications remains an open problem, as
Arakelov geometry for such situations has not yet fully been developed. A
corresponding Arakelov intersection ring has been established in [BKK] by
Burgos, Kramer and Kühn, but the associated K-theory of vector bundles
does not exist yet; see [MR] for associated conjectures. In particular one could
search an analogue of the Hirzebruch-Mumford proportionality principle in
Arakelov geometry. Van der Geer investigated the classical Chow ring of the
moduli stack of abelian varieties and its compactifications [G] with a different
method. The approach there to determine the tautological subring uses the
non-equivariant Grothendieck-Riemann-Roch theorem applied to line bundles
associated to theta divisors. Thus it might be possible to avoid the use of the
fixed point formula in our situation by mimicking this method, possibly by
extending the methods of Yoshikawa [Y]; but computing the occurring objects
related to the theta divisor is presumably not easy.
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Results extending some parts of an early preprint form of this article ([K2])
in the spirit of Mumford’s extension of the proportionality principle have
been conjectured in [MR]. That article also exploits the case in which more
special automorphisms exist than the (−1) automorphism. Their conjectures
and results are mainly generalizing Corollary 4.1.

Acknowledgements. I thank A. Johan de Jong, Damian Roessler, Christophe
Soulé, Harry Tamvakis, Emmanuel Ullmo, Torsten Wedhorn and the referee
for helpful discussions and comments. Also I thank the Deutsche Forschungs-
gemeinschaft which supported me with a Heisenberg fellowship during the
preparation of parts of this article.

2 Torsion forms

Let π:E1,0 → B denote a d-dimensional holomorphic vector bundle over a
complex manifold. Let Λ be a lattice subbundle of the underlying real vector
bundle E1,0

R of rank 2d. Thus the quotient bundle M := E1,0/Λ → B is a
holomorphic fibration by tori Z. Let

Λ∗ :=
{
µ ∈ (E1,0

R )∗
∣∣ µ(λ) ∈ 2πZ for all λ ∈ Λ

}
denote the dual lattice bundle. Assume that E1,0 is equipped with an Hermi-
tian metric such that the volume of the fibers is constant. Any polarization
induces such a metric.

Let NV be the number operator acting on Γ (Z,ΛqT ∗0,1Z) by multiplica-
tion with q. Let Trs denote the supertrace with respect to the Z/2Z-grading on
ΛT ∗B⊗End(ΛT ∗0,1Z). Let φ denote the map acting on Λ2pT ∗B as multipli-
cation by (2πi)−p. We write Ã(B) for Ã(B) :=

⊕
p≥0(A

p,p(B)/(Im ∂+Im ∂)),
where Ap,p(B) denotes the C∞ differential forms of type (p, p) on B. We shall
denote a vector bundle F together with an Hermitian metric h by F . Then
chg(F ) shall denote the Chern-Weil representative of the equivariant Chern
character associated to the restriction of (F, h) to the fixed point subvariety.
Recall (see e.g. [B3]) also that Tdg(F ) is the differential form

Tdg(F ) :=
ctop(F g)∑

k≥0(−1)kchg(ΛkF )
.

In [K1, Section 3], a superconnection At acting on the infinite-dimensional
vector bundle Γ (Z,ΛT ∗0,1Z) over B has been introduced, depending on t ∈
R+. For a fibrewise acting holomorphic isometry g the limit

lim
t→∞

φTrsg
∗NHe

−A2
t =: ω∞

exists and is given by the respective trace restricted to the cohomology of the
fibers. The equivariant analytic torsion form Tg(π,OM ) ∈ Ã(B) was defined
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there as the derivative at zero of the zeta function with values in differential
forms on B given by

− 1
Γ (s)

∫ ∞

0

(φTrsg
∗NHe

−A2
t − ω∞)ts−1 dt

for Re s > d.

Theorem 2.1. Let an isometry g act fibrewise with isolated fixed points on
the fibration by tori π:M → B. Then the equivariant torsion form Tg(π,OM )
vanishes.

Proof. Let fµ:M → C denote the function eiµ for µ ∈ Λ∗. As is shown in
[K1, §5] the operator A2

t acts diagonally with respect to the Hilbert space
decomposition

Γ (Z,ΛT ∗0,1Z) =
⊕

µ∈Λ∗

ΛE∗0,1 ⊗ {fµ} .

As in [KR4, Lemma 4.1] the induced action by g maps a function fµ to a
multiple of itself if and only if µ = 0 because g acts fixed point free on
E1,0 outside the zero section. In that case, fµ represent an element in the
cohomology. Thus the zeta function defining the torsion vanishes. ut

Remark. As in [KR4, Lemma 4.1], the same proof shows the vanishing of the
equivariant torsion form Tg(π,L) for coefficients in a g-equivariant line bundle
L with vanishing first Chern class.

We shall also need the following result of [K1] for the non-equivariant
torsion form T (π,OM ) := Tid(π,OM ): Assume for simplicity that π is Kähler.
Consider for Re s < 0 the zeta function with values in (d−1, d−1)-forms on B

Z(s) :=
Γ (2d− s− 1)vol(M)

Γ (s)(d− 1)!

∑
λ∈Λ\{0}

( ∂∂
4πi

‖λ1,0‖2
)∧(d−1)(‖λ1,0‖2

)s+1−2d

where λ1,0 denotes a lattice section in E1,0. (In [K1] the volume is equal to 1.)
Then the limit γ := lims→0− Z

′(0) exists and it transgresses the Chern-Weil
form cd(E0,1) representing the Euler class cd(E0,1)

∂∂

2πi
γ = cd(E0,1) .

In [K1, Th. 4.1] the torsion form is shown to equal

T (π,OM ) =
γ

Td
(
E0,1

)
in Ã(B). The differential form γ was intensively studied in [K1].
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3 Abelian schemes and the fixed point formula

We shall use the Arakelov geometric concepts and notation of [SABK] and
[KR1]. In this article we shall only give a brief introduction to Arakelov geom-
etry, and we refer to [SABK] for details. Let D be a regular arithmetic ring,
i.e., a regular, excellent, Noetherian integral ring, together with a finite set S
of ring monomorphisms of D → C, invariant under complex conjugation. We
shall denote by G := µn the diagonalizable group scheme over D associated
to Z/nZ. We choose once and for all a primitive n-th root of unity ζn ∈ C.
Let f :Y → Spec D be an equivariant arithmetic variety, i.e., a regular inte-
gral scheme, endowed with a µn-projective action over Spec D. The groups
of n-th roots of unity acts on the d-dimensional manifold Y (C) by holomor-
phic automorphisms and we shall write g for the automorphism corresponding
to ζn.

We write fµn for the map Yµn → Spec D induced by f on the fixed
point subvariety. Complex conjugation induces an antiholomorphic automor-
phism of Y (C) and Yµn

(C), both of which we denote by F∞. The space Ã(Y )
is the sum over p of the subspaces of Ãp,p(Y (C)) of classes of differential
(p, p)−forms ω such that F ∗∞ω = (−1)pω. Let Dp,p(Y (C)) denote similarly the
F∞-equivariant currents as duals of differential forms of type (d− p, d− p). It
contains in particular the Dirac currents δZ(C) of p-codimensional subvarieties
Z of Y .

Gillet-Soulé’s arithmetic Chow ring ĈH∗(Y ) is the quotient of the Z-
module generated by pairs (Z, gZ) with Z an arithmetic subvariety of codimen-
sion p, gZ ∈ Dp−1,p−1(Y (C)) with ∂∂

2πigZ + δZ(C) being a smooth differential
form by the submodule generated by the pairs (div f,− log ‖f‖2) for rational
functions f on Y . Let CH∗(Y ) denote the classical Chow ring. Then there is
an exact sequence in any degree p

CHp,p−1(Y )
ρ−→ Ãp−1,p−1(Y ) a−→ ĈHp(Y )

ζ−→ CHp(Y ) −→ 0 . (2)

For Hermitian vector bundles E on Y Gillet and Soulé defined arithmetic
Chern classes ĉp(E) ∈ ĈHp(Y )Q.

By “product of Chern classes”, we shall understand in this article any
product of at least two equal or non-equal Chern classes of degree greater
than 0 of a given vector bundle.

Lemma 3.1. Let

φ̂ =
∞∑

j=0

aj ĉj + products of Chern classes

denote an arithmetic characteristic class with aj ∈ Q and aj 6= 0 for j >
0. Assume that for a vector bundle F on an arithmetic variety Y we have
φ̂(F ) = m + a(β) where β is a differential form on Y (C) with ∂∂β = 0 and
m ∈ ĈH0(Y )Q. Then
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∞∑
j=0

aj ĉj(F ) = m+ a(β) .

Proof. We use induction. For the term in ĈH0(Y )Q, the formula is clear.
Assume now for k ∈ N0 that

k∑
j=0

aj ĉj(F ) = m+
k∑

j=0

a(β)[j] .

Then ĉj(F ) ∈ a(ker ∂∂) for 1 ≤ j ≤ k, thus products of these ĉj ’s vanish
by [SABK, Remark III.2.3.1]. Thus the term of degree k + 1 of φ̂(F ) equals
ak+1ĉk+1(F ). ut

We define arithmetic Pontrjagin classes p̂j ∈ ĈH2j of arithmetic vector
bundles by the relation

∞∑
j=0

(−z2)j p̂j := (
∞∑

j=0

zj ĉj)(
∞∑

j=0

(−z)j ĉj) .

Thus,

p̂j(F ) = (−1)j ĉ2j(F ⊕ F ∗) = ĉ2j (F ) + 2
j∑

l=1

(−1)lĉj+l(F )ĉj−l(F )

for an arithmetic vector bundle F (compare [MiS, §15]). Similarly to the
construction of Chern classes via the elementary symmetric polynomials, the
Pontrjagin classes can be constructed using the elementary symmetric poly-
nomials in the squares of the variables. Thus many formulae for Chern classes
have an easily deduced analogue for Pontrjagin classes. In particular, Lemma
3.1 holds with Chern classes replaced by Pontrjagin classes.

Now let Y , B be µn-equivariant arithmetic varieties over some fixed arith-
metic ring D and let π:Y → B be a map over D, which is flat, µn-projective
and smooth over the complex numbers. Fix a µn(C)-invariant Kähler metric
on Y (C). We recall [KR1, Definition 4.1] extending the definition of Gillet-
Soulé’s arithmetic K0-theory to the equivariant setting: Let c̃hg(E) be an
equivariant Bott-Chern secondary class as introduced in [KR1, Th. 3.4]. The
arithmetic equivariant Grothendieck group K̂µn(Y ) of Y is the sum of the
abelian group Ã(Yµn

) and the free abelian group generated by the equivari-
ant isometry classes of Hermitian vector bundles, together with the following
relations: For every short exact sequence E : 0 → E′ → E → E′′ → 0 and
any equivariant metrics on E, E′, and E′′, we have the relation c̃hg(E) =
E′ − E + E′′ in K̂µn(Y ). We remark that K̂µn(Y ) has a natural ring struc-
ture. We denote the canonical map Ã(Yµn) → K̂µn(Y ) by a; the canonical
trivial Hermitian line bundle O shall often be denoted by 1.
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If E is a π-acyclic (meaning that Rkπ∗E = 0 if k > 0) µn-equivariant
Hermitian bundle on Y , let π∗E be the direct image sheaf (which is locally
free), endowed with its natural equivariant structure and L2-metric. Consider
the rule which associates the element π∗E − Tg(π,E) of K̂µn

0 (B) to every
π-acyclic equivariant Hermitian bundle E and the element∫

Y (C)g/B(C)g

Tdg(Tπ)η ∈ Ã(Bµn
)

to every η ∈ Ã(Yµn
). This rule induces a group homomorphism π!: K̂

µn

0 (Y ) →
K̂µn

0 (B) ([KR2, Prop. 3.1]).
Let R be a ring as appearing in the statement of [KR1, Th. 4.4] (in the

cases considered in this paper, we can choose R = D[1/2]) and let R(µn)
be the Grothendieck group of finitely generated projective µn-comodules. Let
λ−1(E) denote the alternating sum

∑
k(−1)kΛkE of a vector bundle E. Con-

sider the zeta function L(α, s) =
∑∞

k=1 k
−sαk for Re s > 1, |α| = 1. It has a

meromorphic continuation to s ∈ C which shall be denoted by L, too. Then
L(−1, s) = (21−s − 1)ζ(s) and the function

R̃(α, x) :=
∞∑

k=0

∂L
∂s

(α,−k) + L(α,−k)
k∑

j=1

1
2j

 xk

k!

defines the Bismut equivariant R-class of an equivariant holomorphic hermi-
tian vector bundle E with E|Xg

=
∑

ζ Eζ as

Rg(E) :=
∑
ζ∈S1

(
Tr R̃

(
ζ,−Ω

Eζ

2πi
)
− Tr R̃

(
1/ζ,

ΩEζ

2πi
))

.

The following result was stated as a conjecture in [KR2, Conj. 3.2].

Conjecture 3.2. Set

td(π) :=
λ−1(π∗N∗

B/Bµn
)

λ−1(N∗
Y/Yµn

)

(
1− a(Rg(NY/Yµn

)) + a(Rg(π∗NB/Bµn
))
)
.

Then the following diagram commutes

K̂µn

0 (Y )
td(π)ρ′−→ K̂µn

0 (Yµn
)⊗R(µn) Ry π!

y πµn

!

K̂µn

0 (B)
ρ′−→ K̂µn

0 (Bµn
)⊗R(µn) R

where ρ′ denotes the restriction to the fixed point subscheme.

As this result is not the main aim of this paper, we only outline the proof;
details shall appear elsewhere.
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Sketch of the proof. As explained in [KR2, conjecture 3.2] the proof of the
main statement of [KR1] was already written with this general result in mind
and it holds without any major change for this situation, when using the
generalization of Bismut’s equivariant immersion formula for the holomorphic
torsion ([KR1, Th. 3.11]) to torsion forms. The latter has now been established
by Bismut and Ma [BM]. The proof in [KR1] holds when using [BM] instead
of [KR1, Th. 3.11] and [KR2, Prop. 3.1] instead of [KR1, Prop. 4.3].

Also one has to replace in sections 5, 6.1 and 6.3 the integrals over Yg, Xg

etc. by integrals over Yg/Bg, Xg/Bg, while replacing the maps occurring there
by corresponding relative versions. As direct images can occur as non-locally-
free coherent sheaves, one has to consider at some steps suitable resolutions
of vector bundles such that the higher direct images of the vector bundles in
this resolution are locally free as e.g. on [Fal, p. 74]. ut

Let f :B → Spec D denote a quasi-projective arithmetic variety and let
π:Y → B denote a principally polarized abelian scheme of relative dimension
d. For simplicity, we assume that the volume of the fibers over C is scaled
to equal 1; it would be 2d for the metric induced from the polarization. We
shall explain the effect of rescaling the metric later (after Theorem 5.1). Set
E := (R1π∗O, ‖ · ‖L2)∗. This bundle E = Lie(Y/B)∗ is the Hodge bundle.
Then by [BBM, Prop. 2.5.2], the full direct image of O under π is given by
R•π∗O = Λ•E∗ and the relative tangent bundle is given by Tπ = π∗E∗.
By similarly representing the cohomology of the fibres Y/B by translation-
invariant differential forms, one shows that these isomorphisms induce isome-
tries if and only if the volume of the fibres equals 1 (e.g. as in [K1, Lemma
3.0]), thus

R•π∗O = Λ•E∗ (3)

and
Tπ = π∗E∗ . (4)

See also [FC, Th. VI.1.1], where these properties are extended to toroidal
compactifications. For an action of G = µn on Y Conjecture 3.2 combined
with the arithmetic Grothendieck-Riemann-Roch theorem in all degrees for
πG states (analogous to [KR1, section 7.4]):

Theorem 3.3.

ĉhG(R•π∗O)− a(Tg(πC,O)) = πG
∗
(
T̂dG(Tπ)(1− a(Rg(TπC)))

)
.

As in [KR1], G = µn is used as the index for equivariant arithmetic classes,
while the chosen associated automorphism g over the points at infinity is
used for objects defined there. We shall mainly consider the case where πG

is actually a smooth covering, Riemannian over C; thus the statement of the
arithmetic Grothendieck-Riemann-Roch is in fact very simple in this case. We
obtain the equation

ĉhG(Λ•E∗)− a(Tg(πC,O)) = πG
∗
(
T̂dG(π∗E∗)(1− a(Rg(π∗E∗

C)))
)
.
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Using the equation

ĉhG(Λ•E∗) =
ĉtop(EG)

T̂dG(E)

this simplifies to

ĉtop(EG)

T̂dG(E)
− a(Tg(πC,O)) = T̂dG(E∗)(1− a(Rg(E∗

C)))πG
∗ π

∗1 ,

or, using that a(ker ∂̄∂) is an ideal of square zero,

ĉtop(EG)(1 + a(Rg(E∗
C)))− a(Tg(πC,O)Tdg(EC)) = T̂dG(E)T̂dG(E∗)πG

∗ π
∗1 .
(5)

Remarks. 1) If G acts fibrewise with isolated fixed points (over C), by The-
orem 2.1 the left hand side of equation (5) is an element of ĈH0(B)Q(ζn) +
a(ker ∂∂). Set for an equivariant bundle F in analogy to the classical Â-class

Âg(F ) := Tdg(F ) exp(−c1(F ) + chg(F )[0]

2
) (6)

and let ̂̂AG denote the corresponding arithmetic class (an unfortunate clash
of notations); in particular Âg(F ∗) = (−1)rk(F/F G)Âg(F ). For isolated fixed
points, by comparing the components in degree 0 in equation (5) one obtains

πG
∗ π

∗1 = (−1)d(Âg(E)[0])−2

and thus by Theorem 2.1

1 + a(Rg(E∗
C)) =

 ̂̂
AG(E)

Âg(E)[0]

2

. (7)

(compare [KR4, Prop. 5.1]). Both sides can be regarded as products over
the occurring eigenvalues of g of characteristic classes of the corresponding
bundles Eζ . One can wonder whether the equality holds for the single factors,
similar to [KR4]. Related work is announced by Maillot and Roessler in [MR].

2) If G(C) does not act with isolated fixed points, then the right hand side
vanishes, ctop(EG) vanishes and we find

ĉtop(EG) = a
(
Tg(πC,O)Tdg(EC)

)
. (8)

As was mentioned in [K1, eq. (7.8)], one finds in particular

ĉd(E) = a(γ) . (9)

For this statement we need Gillet-Soulé’s arithmetic Grothendieck-Riemann-
Roch [GS8] in all degrees, while the above statements use this theorem only
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in degree 0. The full result was stated in [S, section 4]; a proof of an analogue
statement is given in [R2, section 8]. Another proof was sketched in [Fal] using
a possibly different direct image. If one wants to avoid the use of this strong
result, one can at least show the existence of some (d − 1, d − 1) differential
form γ′ with ĉd(E) = a(γ′) the following way: The analogue proof of equation
(9) in the classical algebraic Chow ring CH∗(B) using the classical Riemann-
Roch-Grothendieck Theorem shows the vanishing of cd(E). Thus by the exact
sequence

Ãd−1,d−1(B) a−→ ĈHd(B)
ζ−→ CHd(B) −→ 0

we see that (9) holds with some form γ′.

Now we restrict ourself to the action of the automorphism (−1). We need
to assume that this automorphism corresponds to a µ2-action. This condition
can always be satisfied by changing the base Spec D to Spec D[ 12 ] ([KR1,
Introduction] or [KR4, section 2]).

Theorem 3.4. Let π:Y → B denote a principally polarized abelian scheme of
relative dimension d over an arithmetic variety B. Set E := (R1π∗O, ‖·‖L2)∗.
Then the Pontrjagin classes of E are given by

p̂k(E) = (−1)k

2ζ ′(1− 2k)
ζ(1− 2k)

+
2k−1∑
j=1

1
j
− 2 log 2

1− 4−k

 (2k − 1)! a(ch(E)[2k−1]) .

(10)

The log 2-term actually vanishes in the arithmetic Chow ring over SpecD[1/2].

Remark. The occurrence of R-class-like terms in Theorem 3.4 makes it very
unlikely that there is an easy proof of this result which does not use arithmetic
Riemann-Roch-Theorems. This is in sharp contrast to the classical case over C,
where the analogues formulae are a trivial topological result: The underlying
real vector bundle of EC is flat, as the period lattice determines a flat structure.
Thus the topological Pontrjagin classes pj(EC) vanish.

Proof. Let Q(z) denote the power series in z given by the Taylor expansion
of

4(1 + e−z)−1(1 + ez)−1 =
1

cosh2 z
2

at z = 0. Let Q̂ denote the associated multiplicative arithmetic characteristic
class. Thus by definition for G = µ2

4dT̂dG(E)T̂dG(E∗) = Q̂(E)

and Q̂ can be represented by Pontrjagin classes, as the power series Q is
even. Now we can apply Lemma 3.1 for Pontrjagin classes to equation (5) of
equation (7). By a formula by Cauchy [Hi3, §1, eq. (10)], the summand of Q̂
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consisting only of single Pontrjagin classes is given by taking the Taylor series
in z at z = 0 of

Q(
√
−z) d

dz

z

Q(
√
−z)

=
d
dz (z cosh2

√
−z
2 )

cosh2
√
−z
2

= 1 +
√
−z
2

tanh
√
−z
2

(11)

and replacing every power zj by p̂j . The bundle EG is trivial, hence ĉtop(EG) =
1. Thus by equation (5) with πG

∗ π
∗1 = 4d we obtain

∞∑
k=1

(4k − 1)(−1)k+1

(2k − 1)!
ζ(1− 2k)p̂k(E) = −a(Rg(EC)) .

The function R̃(α, x) by which the Bismut equivariant R-class is constructed
satisfies for α = −1 the relation

R̃(−1, x)− R̃(−1,−x) =
∞∑

k=1

[
(4k − 1)

(
2ζ ′(1− 2k) + ζ(1− 2k)

2k−1∑
j=1

1
j

)
−2 log 2 · 4kζ(1− 2k)

]
· x2k−1

(2k − 1)!
. (12)

Thus we finally obtain the desired result. ut

The first Pontrjagin classes are given by

p̂1 = −2ĉ2 + ĉ21 , p̂2 = 2ĉ4 − 2ĉ3ĉ1 + ĉ22 , p̂3 = −2ĉ6 + 2ĉ5ĉ1 − 2ĉ4ĉ2 + ĉ23 .

In general, p̂k = (−1)k2ĉ2k+products of Chern classes. Thus knowing the
Pontrjagin classes allows us to express the Chern classes of even degree by the
Chern classes of odd degree.

Corollary 3.5. The Chern-Weil form representing the total Pontrjagin class
vanishes (except in degree 0):

c(E ⊕ E∗) = 1 , i.e., det(1 + (ΩE)∧2) = 1

for the curvature ΩE of the Hodge bundle. The Pontrjagin classes in the al-
gebraic Chow ring CH(B) vanish:

c(E ⊕ E∗) = 1 .

Proof. These facts follow from applying the forget-functors ω: ĈH(B) →
A(B(C)) and ζ: ĈH(B) → CH(B). ut

The first fact can also be deduced by “linear algebra”, e.g. using the
Mathai-Quillen calculus, but it is not that easy. The second statement was ob-
tained in [G, Th. 2.5] using the non-equivariant Grothendieck-Riemann-Roch
theorem and the geometry of theta divisors.
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4 A K-theoretical proof

The Pontrjagin classes form one set of generators of the algebra of even classes;
another important set of generators is given by (2k)! times the Chern character
in even degrees 2k. We give the value of these classes below. Let U denote the
additive characteristic class associated to the power series

U(x) :=
∞∑

k=1

ζ ′(1− 2k)
ζ(1− 2k)

+
2k−1∑
j=1

1
2j
− log 2

1− 4−k

 x2k−1

(2k − 1)!

and let d again denote the relative dimension of the abelian scheme.

Corollary 4.1. The part of ĉh(E) in ĈHeven(B)Q is given by the formula

ĉh(E)[even] = d− a(U(E)) .

Proof. The part of ĉh(E) of even degree equals

ĉh(E)[even] =
1
2
ĉh(E ⊕ E∗) ,

thus it can be expressed by Pontrjagin classes. More precisely by Newton’s
formulae ([Hi3, §10.1]),

(2k)!ĉh[2k] − p̂1 · (2k − 2)!ĉh[2k−2] + · · ·+ (−1)k−1p̂k−12!ĉh[2] = (−1)k+1kp̂k

for k ∈ N. As products of the arithmetic Pontrjagin classes vanish in ĈH(Y )Q
by Lemma 3.4, we thus observe that the part of ĉh(E) in ĈHeven(Y )Q is given
by

ĉh(E)[even] = d+
∑
k>0

(−1)k+1p̂k(E)
2(2k − 1)!

.

Thus the result follows from Lemma 3.4. ut

As Harry Tamvakis pointed out to the author, a similar argument is used
in [T, section 2] and its predecessors.

Now we show how to deduce Corollary 4.1 (and thus the equivalent Theo-
rem 3.4) using only Conjecture 3.2 without combining it with the arithmetic
Grothendieck-Riemann-Roch Theorem as in Theorem 3.3. Of course the struc-
ture of the proof shall not be too different as the Grothendieck-Riemann-Roch
Theorem was very simple in this case; but the following proof is quite instruc-
tive as it provides a different point of view on the resulting characteristic
classes. We shall use the λ-ring structure on K̂ constructed in [R1].

Conjecture 3.2 applied to the abelian scheme π:Y → B provides the for-
mula

π!O = πµ2
!

1− a(Rg(NY/Yµn
))

λ−1(N
∗
Y/Yµn

)
.
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In our situation, NY/Yµn
= Tπ. Combining this with the fundamental equa-

tions (3), (4) and Theorem 2.1 yields

λ−1E
∗ = πµ2

! π∗
1− a(Rg(E∗))

λ−1E

and using the projection formula we find

λ−1E ⊕ E∗ = 4d
(
1− a(Rg(E∗))

)
.

Let E′ denote the vector bundle E equipped with the trivial µ2-action. Now
one can deduce from this that E′ ⊕ E′∗ itself has the form 2d + a(η) with a
∂̄∂-closed form η: Apply the Chern character to both sides. Then use equation
(11) and Lemma 3.1 to deduce by induction that all Chern classes of E′ ⊕ E′∗

are in a(ker ∂̄∂). Thus using the fact that the arithmetic Chern character is
an isomorphism up to torsion ([GS3, Th. 7.3.4]) E′ ⊕ E′∗ = 2d + a(η) with
a(η) having even degrees, and E ⊕ E∗ = (2d+ a(η))⊗ (−1) in K̂µ2(B)Q. One
could use the γ-filtration instead to deduce this result; it would be interesting
to find a proof which does not use any filtration.

For a β ∈ Ãp,p(B), the action of the λ-operators can be determined as
follows: The action of the k-th Adams operator is given by ψka(β) = kp+1a(β)
([GS3, p. 235]). Then with ψt :=

∑
k>0 t

kψk, λt :=
∑

k≥0 t
kλk the Adams

operators are related to the λ-operators via

ψt(x) = −t d
dt

log λ−t(x)

for x ∈ K̂µn(B). As ψt(a(β)) = Li−1−p(t)a(β) with the polylogarithm Li, we
find for β ∈ ker ∂̄∂

λt(a(β)) = 1− Li−p(−t)a(β)

or λka(β) = −(−1)kkpa(β) (Li−p( t
t−1 ) is actually a polynomial in t; in this

context this can be regarded as a relation coming from the γ-filtration). In
particular λ−1a(β) = 1 − ζ(−p)a(β), and λ−1(a(β) ⊗ (−1)) = λ1a(β) ⊗ 1 =
(1 + (1− 2p+1)ζ(−p)a(β))⊗ 1 in K̂µ2 ⊗Rµ2

C.
By comparing

λ−1

(
a(η)⊗ (−1)

)
= a

(∑
k>0

ζ(1− 2k)(1− 4k)η[2k−1]
)
⊗ 1 = a

(
R−1(E∗)

)
⊗ 1

we finally derive a(η) = a
(
−2U(E)

)
and thus

E′ ⊕ E′∗ = 2d− 2a(U(E)) .

In other words the Hermitian vector bundle E′ ⊕ E′∗ equals the 2d-dimensional
trivial bundle plus the class of differential forms given by U(E) in K̂µ2⊗Rµ2

C.
From this Corollary 4.1 follows.
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5 A Hirzebruch proportionality principle and other
applications

The following formula can be used to express the height of complete subvari-
eties of codimension d of the moduli space of abelian varieties as an integral
over differential forms.

Theorem 5.1. There is a real number rd ∈ R and a Chern-Weil form φ(E)
on BC of degree (d− 1)(d− 2)/2 such that

ĉ
1+d(d−1)/2
1 (E) = a

(
rd · cd(d−1)/2

1 (E) + φ(E)γ
)
.

The form φ(E) is actually a polynomial with integral coefficients in the
Chern forms of E. See Corollary 5.6 for a formula for rd.

Proof. Consider the graded ring Rd given by Q[u1, . . . , ud] divided by the
relations (

1 +
d−1∑
j=1

uj

)(
1 +

d−1∑
j=1

(−1)juj

)
= 1 , and ud = 0 (13)

where uj shall have degree j (1 ≤ j ≤ d). This ring is finite dimensional as a
vector space over Q with basis

uj1 · · ·ujm
, 1 ≤ j1 < · · · < jm < d , 1 ≤ m < d .

In particular, any element of Rd has degree ≤ d(d−1)
2 . As the relation (13) is

verified for uj = ĉj(E) up to multiples of the Pontrjagin classes and ĉd(E),
any polynomial in the ĉj(E)’s can be expressed in terms of the p̂j(E)’s and
ĉd(E) if the corresponding polynomial in the uj ’s vanishes in Rd.

Thus we can express ĉ1+d(d−1)/2
1 (E) as the image under a of a topological

characteristic class of degree d(d − 1)/2 plus γ times a Chern-Weil form of
degree (d−1)(d−2)/2. As any element of degree d(d−1)/2 inRd is proportional
to ud(d−1)/2

1 , the Theorem follows. ut

Any other arithmetic characteristic class of E vanishing in Rd can be
expressed in a similar way.

Example 5.2. We shall compute ĉ1+d(d−1)/2
1 (E) explicitly for small d. Define

topological cohomology classes rj by p̂j(E) = a(rj) via Theorem 3.4. For
d = 1, clearly

ĉ1(E) = a(γ) .

In the case d = 2 we find by the formula for p̂1

ĉ21(E) = a(r1 + 2γ) = a
[
(−1 +

8
3

log 2 + 24ζ ′(−1))c1(E) + 2γ
]
.

Combining the formulae for the first two Pontrjagin classes we get
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p̂2 = 2ĉ4 − 2ĉ3ĉ1 +
1
4
ĉ41 −

1
2
ĉ21p̂1 +

1
4
p̂2
1 .

Thus for d = 3 we find, using c3(E) = 0 and c21(E) = 2c2(E),

ĉ41(E) = a(2c21(E)r1 + 4r2 + 8c1(E)γ)

= a
[
(−17

3
+

48
5

log 2 + 48ζ ′(−1)− 480ζ ′(−3))c31(E) + 8c1(E)γ
]
.

For d = 4 one obtains

ĉ71(E) = a
[

64c2(E)c3(E)r1 − (8c1(E)c2(E) + 32c3(E))r2 + 64c1(E)r3

+16
(
7c1(E)c2(E)− 4c3(E)

)
γ
]
.

As in this case ch(E)[1] = c1(E), 3!ch(E)[3] = −c31(E)/2 + 3c3(E) and
5!ch(E)[5] = c51(E)/16, we find

ĉ71(E) = a
[(
−1063

60
+

1520
63

log 2 + 96ζ ′(−1)− 600ζ ′(−3) + 2016ζ ′(−5)
)
c51(E)

+16(7c1(E)c2(E)− 4c3(E))γ
]
.

For d = 5 on gets

ĉ111 (E) = a
[

2816 γ c2 (3 c1 c3 − 8 c4) + c101

(
−104611

2520
+

113632
2295

log(2)

−3280ζ ′(−7) + 2352ζ ′(−5)− 760ζ ′(−3) + 176ζ ′(−1)
)]
,

and for d = 6

ĉ161 (E) = a
[
425984 γ (11 c1 c2 c3 c4 − 91 c2 c3 c5) + 40 c1 c4 c5)

+c151
(
−3684242

45045
+

3321026752
37303695

log(2) +
36096

13
ζ ′(−9)

−526080
143

ζ ′(−7) +
395136

143
ζ ′(−5)− 136320

143
ζ ′(−3) +

3264
11

ζ ′(−1)
)]
.

Remark. We shall shortly describe the effect of rescaling the metric for the
characteristic classes described above. By the multiplicativity of the Chern
character and using ĉh(O, α| · |2) = 1− a(logα), ĉh(E) changes by

logα · a(ch(E))

when multiplying the metric on E∗ by a constant α ∈ R+ (or with a function
α ∈ C∞(B(C),R+)). Thus, we observe that in our case ĉh(E)[odd] is invariant
under rescaling on E∗ and we get an additional term

logα · a
(
ch(E)[odd]

)
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on the right hand side in Corollary 4.1, when the volume of the fibers equals
αd instead of 1. Thus the right hand side of Theorem 3.4 gets an additional
term

(−1)k+1 logα
2(2k − 1)!

a
(
ch(E)[2k−1]

)
.

Similarly,
ĉd(E) = a(γ) + logα · a(cd−1(E))

for the rescaled metric. In Theorem 5.1, we obtain an additional

logα · a
(d(d− 1) + 2

2
· cd(d−1)/2

1 (E)
)

on the right hand side and this shows

φ(E)cd−1(E) =
d(d− 1) + 2

2
c
d(d−1)/2
1 (E) . (14)

Alternatively, one can show the same formulae by investigating directly the
Bott-Chern secondary class of Rπ∗O for the metric change.

Assume that the base space Spec D equals Spec OK [ 12 ] for a number
field K. We consider the push forward map

d̂eg: ĈH(B) −→ ĈH1
(
Spec(OK [

1
2
])
)
−→ ĈH1

(
Spec(Z[

1
2
])
) ∼= R/(Q log 2) ,

where the last identification contains the traditional factor 1
2 .

As Keel and Sadun [KS] have shown by proving a conjecture by Oort,
the moduli space of principally polarized complex abelian varieties does not
have any projective subvarieties of codimension d, if d ≥ 3. Thus the following
two corollaries have a non-empty content only for d = 2. Still it is likely that
they serve as models for similar results for non-projective subvarieties in an
extended Arakelov geometry in the spirit of [BKK]. For that reason we state
them together with the short proof.

Using the definition

h(B) :=
1

[K : Q]
d̂eg ĉ1+dim BC

1 (E|B)

of the global height (thus defined modulo rational multiples of log 2 in this
case) of a projective arithmetic variety we find:

Corollary 5.3. If dimBC = d(d−1)
2 and B is projective, then the (global)

height of B with respect to detE is given by

h(B) =
rd
2
· degB +

1
2

∫
BC

φ(E)γ .

with deg denoting the algebraic degree.
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Let α(E,Λ, ωE) ∈
∧∗

T ∗B be a differential form associated to bundles
of principally polarized abelian varieties (E,Λ, ωE) (with Hodge bundle E,
lattice Λ and polarization form ωE) in a functorial way: If f :B′′ → B is a
holomorphic map and (f∗E, f∗Λ, f∗ωE) the induced bundle over B′′, then
α(f∗E, f∗Λ, f∗ωE) = f∗α(E,Λ, ωE); in other words, α shall be a modular
form. Choose an open cover (Ui) of B such that the bundle trivializes over
Ui. To define the Hecke operator T (p) for p prime, associated to the group
Sp(n,Z), consider on Ui the set L(p) of all maximal sublattices Λ′ ⊂ Λ|Ui

such
that ωE takes values in pZ on Λ′. The sums

T (p)α(E,Λ, ωE)|Ui
:=

∑
Λ′∈L(p)

α(E,Λ′,
ωE

p
)

patch together to a globally defined differential form on B. Note that the
set L(p) may be identified with the set of all maximal isotropic subspaces
(Lagrangians) Λ′/pΛ of the symplectic vector space (Λ/pΛ, ωE) over Fp.

Let B′ be a disjoint union of abelian schemes with one connected com-
ponent for each Λ′ ∈ L(p) such that the Hodge bundle over each connected
component over Spec C is isomorphic to the hodge bundle E(C) over B(C),
but the period lattice and polarization form are given by Λ′ and ωE/p.

Corollary 5.4. For B as in Corollary 5.3 set h′(B) := h(B)
(dim BC+1)deg B . The

height of B and B′ are related by

h′(B′) = h′(B) +
pd − 1
pd + 1

· log p
2

.

Proof. For this proof we need that γ is indeed the form determined by the
arithmetic Riemann-Roch Theorem in all degrees (compare equation (9)).
The action of Hecke operators on γ was investigated in [K1, Section 7]. In
particular it was shown that

T (p)γ =
d∏

j=1

(pj + 1)
(
γ +

pd − 1
pd + 1

log p · cd−1(E)
)
.

The action of Hecke operators commutes with multiplication by a character-
istic class, as the latter are independent of the period lattice in E. Thus by
Corollary 5.3 the height of B′ is given by

h(B′) =
d∏

j=1

(pj + 1)

(
rd
2
· degBC +

1
2

∫
BC

φ(E)γ +
pd − 1
pd + 1

log p
2

∫
BC

φ(E)cd−1(E)

)
.

Combining this with equation (14) gives the result. ut
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Similarly one obtains a formula for the action of any other Hecke operator
using the explicit description of its action on γ in [K1, equation (7.4)].

The choice of B′ is modeled after the action of the Hecke operator T (p)
on the intersection cohomology on moduli of abelian varieties, as described
in [FC, chapter VII.3], where B should be regarded as a subvariety of the
moduli space and B′ as representing its image under T (p) in the intersec-
tion cohomology. This action is only defined over Spec Z[1/p] though. As

ĈH
1
(Spec Z[1/p]) = R/(Q · log p), the additional term in the above formula

would disappear for this base.

Now we are going to formulate an Arakelov version of Hirzebruch’s pro-
portionality principle. In [Hi2, p. 773] it is stated as follows: Let G/K be a
non-compact irreducible Hermitian symmetric space with compact dual G′/K
and let Γ ⊂ G be a cocompact subgroup such that Γ\G/K is a smooth man-
ifold. Then there is an ring monomorphism

h:H∗(G′/K,Q) → H∗(Γ\G/K,Q)

such that h(c(TG′/K)) = c(TG/K) (and similar for other bundles F ′, F
corresponding to K-representation V ′, V dual to each other). This implies
in particular that Chern numbers on G′/K and Γ\G/K are proportional
[Hi1, p. 345]. Now in our case think for the moment about B as the moduli
space of principally polarized abelian varieties of dimension d. Its projective
dual is the Lagrangian Grassmannian Ld over Spec Z parametrizing maximal
isotropic subspaces in symplectic vector spaces of dimension 2d over any field,
Ld(C) = Sp(d)/U(d). But as the moduli space is a non-compact quotient,
the proportionality principle must be altered slightly by considering Chow
rings modulo certain ideals corresponding to boundary components in a suit-
able compactification. For that reason we consider the Arakelov Chow group
CH∗(Ld−1) with respect to the canonical Kähler metric on Ld−1, which is the
quotient of CH∗(Ld) modulo the ideal (ĉd(S), a(cd(S))) with S being the tau-
tological bundle on Ld, and we map it to ĈH∗(B)/(a(γ)). Here Ld−1 shall be
equipped with the canonical symmetric metric. For the Hermitian symmetric
space Ld−1, the Arakelov Chow ring is a subring of the arithmetic Chow ring
ĈH(Ld−1) ([GS2, 5.1.5]) such that the quotient abelian group depends only
on Ld−1(C). Instead of dealing with the moduli space, we continue to work
with a general regular base B.

The Arakelov Chow ring CH∗(Ld−1) has been investigated by Tamvakis
in [T]. Consider the graded commutative ring

Z[û1, . . . , ûd−1]⊕ R[u1, . . . , ud−1]

where the ring structure is such that R[u1, . . . , ud−1] is an ideal of square zero.
Let R̂d denote the quotient of this ring by the relations

(
1 +

d−1∑
j=1

uj

)(
1 +

d−1∑
j=1

(−1)juj

)
= 1
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and (
1 +

d−1∑
k=1

ûk

)(
1 +

d−1∑
k=1

(−1)kûk

)
= 1−

d−1∑
k=1

(2k−1∑
j=1

1
j

)
(2k − 1)! ch[2k−1](u1, . . . , ud−1) (15)

where ch(u1, . . . , ud−1) denotes the Chern character polynomial in the Chern
classes, taken of u1, . . . , ud−1. Then by [T, Th. 1], there is a ring isomor-
phism Φ: R̂d → CH∗(Ld−1) with Φ(ûk) = ĉk(S∗) and Φ(uk) = a(ck(S∗)). The
Chern character term in (15), which strictly speaking should be written as
(0, ch[2k−1](u1, . . . , ud−1)), is thus mapped to

a
(
ch[2k−1](c1(S∗), . . . , cd−1(S∗))

)
.

Theorem 5.5. There is a ring homomorphism

h: CH∗(Ld−1)Q −→ ĈH∗(B)Q/(a(γ))

with

h(ĉ(S)) = ĉ(E)

(
1 + a

(
d−1∑
k=1

(
ζ ′(1− 2k)
ζ(1− 2k)

− log 2
1− 4−k

)(2k − 1)!ch[2k−1](E)

))

and
h
(
a(c(S))

)
= a(c(E)) .

Note that S∗ and E are ample. One could as well map a(c(S∗)) to a(c(E)),
but the correction factor for the arithmetic characteristic classes would have
additional harmonic number terms.

Remark. For d ≤ 6 one can in fact construct such a ring homomorphism
which preserves degrees. Still this seems to be a very unnatural thing to do.
This is thus in remarkable contrast to the classical Hirzebruch proportionality
principle.

Proof. When writing the relation (15) as

ĉ(S)ĉ(S∗) = 1 + a(ε1)

and the relation in Theorem 3.4 as

ĉ(E)ĉ(E∗) = 1 + a(ε2)

we see that a ring homomorphism h is given by
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h(ĉk(S)) =

√
1 + h(a(ε1))

1 + a(ε2)
ĉk(E) =

(
1 +

1
2
h(a(ε1))−

1
2
a(ε2)

)
ĉk(E)

(where h on im(a) is defined as in the Theorem). Here the factor 1+ 1
2h(a(ε1))−

1
2a(ε2) has even degree, and thus

h
(
ĉk(S∗)

)
=

√
1 + h(a(ε1))

1 + a(ε2)
ĉk(E∗)

which provides the compatibility with the cited relations. ut

Remarks. 1) Note that this proof does not make any use of the remarkable
fact that h(a(ε[k]

1 )) and a(ε[k]
2 ) are proportional forms for any degree k.

2) It would be favorable to have a more direct proof of Theorem 5.5, which
does not use the description of the tautological subring. The R-class-like terms
suggest that one has to use an arithmetic Riemann-Roch Theorem somewhere
in the proof; one could wonder whether one could obtain the description of
CH∗(Ld−1) by a method similar to section 3. Also, one might wonder whether
the statement holds for other symmetric spaces. Our construction relies on
the existence of a universal proper bundle with a fibrewise acting non-trivial
automorphism; thus it shall not extend easily to other cases.

In particular Tamvakis’ height formula [T, Th. 3] provides a combinatorial
formula for the real number rd occurring in Theorem 5.1. Replace each term
H2k−1 occurring in [T, Th. 3] by

−2ζ ′(1− 2k)
ζ(1− 2k)

−
2k−1∑
j=1

1
j

+
2 log 2

1− 4−k

and divide the resulting value by half of the degree of Ld−1. Using Hirzebruch’s
formula

degLd−1 =
(d(d− 1)/2)!∏d−1
k=1(2k − 1)!!

for the degree of Ld−1 (see [Hi1, p. 364]) and the Z+-valued function g[a,b]d−1

from [T] counting involved combinatorial diagrams, we obtain

Corollary 5.6. The real number rd occurring in Theorem 5.1 is given by

rd =
21+(d−1)(d−2)/2

∏d−1
k=1(2k − 1)!!

(d(d− 1)/2)!

·
d−2∑
k=0

−2ζ ′(−2k − 1)
ζ(−2k − 1)

−
2k+1∑
j=1

1
j

+
2 log 2

1− 4−k−1


·
min{k,d−2−k}∑

b=0

(−1)b2−δb,kg[k−b,b]d−1 ,
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where δb,k is Kronecker’s δ.

One might wonder whether there is a ”topological” formula for the height
of locally symmetric spaces similar to [KK, Theorem 8.1]. Comparing the fixed
point height formula [KK, Lemma 8.3] with the Schubert calculus expression
[T, Th. 3] for the height of Lagrangian Grassmannians, one finds∑
ε1,...,εd−1∈{±1}

1∏
i≤j(εii+ εjj)

d(d−1)
2∑

`=1

∑
i≤j

(
∑
ενν)

d(d−1)
2 − (

∑
ενν)

d(d−1)
2 −`+1 (

∑
ενν − (2− δij(εii+ εjj))

`

2`(εii+ εjj)

=
d−2∑
k=0

2k−1∑
j=1

1
j

min{k,d−2−k}∑
b=0

(−1)b2−δb,kg[k−b,b]d−1 .

In [G, Th. 2.5] van der Geer shows that Rd embeds into the (classical)
Chow ring CH∗(Md)Q of the moduli stackMd of principally polarized abelian
varieties. Using this result one finds

Lemma 5.7. Let B be a regular finite covering of the moduli space Md of
principally polarized abelian varieties of dimension d. Then for any non-
vanishing polynomial expression p(u1, . . . , ud−1) in Rd,

h
(
p(ĉ1(S), . . . , ĉd−1(S))

)
/∈ im a .

In particular, h is non-trivial in all degrees. Furthermore, h is injective iff
a(c1(E)d(d−1)/2) 6= 0 in ĈHd(d−1)/2+1(B)Q/(a(γ)).

The need for a regular covering in our context is an unfortunate con-
sequence of the Arakelov geometry of stacks not yet being fully constructed.
Eventually this problem might get remedied. Until then one can resort to base
changes to ensure the existence of regular covers as e.g. the moduli space of
p.p. abelian varieties with level-n structure for n ≥ 3 over Spec Z[1/n, e2πi/n]
([FC, chapter IV.6.2c]).

Proof. Consider the canonical map ζ : ĈH∗(B)Q/(a(γ)) → CH∗(B)Q. Then

ζ
(
h(p(ĉ1(S), . . . , ĉd−1(S)))

)
= p
(
c1(E), . . . , cd−1(E)

)
,

and the latter is non-vanishing according to [G, Th. 1.5]. This proves the first
assertion.

If a(c1(E)d(d−1)/2) 6= 0 in ĈHd(d−1)/2+1(B)Q/(a(γ)), then by the same
induction argument as in the proof of [G, Th. 2.5] Rd embeds in a(ker ∂̄∂).
Finally, by [T, Th. 2] any element z of R̂d can be written in a unique way as
a linear combination of
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ûj1 · · · ûjm
and uj1 · · ·ujm

, with 1 ≤ j1 < · · · < jm < d , 1 ≤ m < d .

Thus if z /∈ im a, then h(z) 6= 0 follows by van der Geer’s result, and if
z ∈ im a \ {0}, then h(z) 6= 0 follows by embedding Rd ⊗ R. ut

Using the exact sequence (2), the condition in the Lemma is that the cohomol-
ogy class c1(E)d(d−1)/2 should not be in the image of the Beilinson regulator.

Finally by comparing Theorem 5.1 with Kühn’s result [Kü, Theorem 6.1]
(see also Bost [Bo]), we conjecture that the analogue of Theorem 5.5 holds
in a yet to be developed Arakelov intersection theory with logarithmic sin-
gularities, extending the methods of [Kü], [BKK], as described in [MR]. I.e.
there should be a ring homomorphism to the Chow ring of the moduli space
of abelian varieties

h: CH∗(Ld)Q → ĈH∗(Md)Q

extending the one in Theorem 5.5, and γ should provide the Green current
corresponding to ĉd(E). This would imply

Conjecture 5.8. For an Arakelov intersection theory with logarithmic singu-
larities, extending the methods of [Kü], the height of a moduli space Md over
Spec Z of principally polarized abelian varieties of relative dimension d is given
by

h(Md) =
rd+1

2
deg(Md) .

The factor 1/2 is caused by the degree map in Arakelov geometry.

6 The Fourier expansion of the Arakelov Euler class of
the Hodge bundle

In this section we shall further investigate the differential form γ which played
a prominent role in the preceding results. We adapt most notations from [K1].
In particular we use as the base space the Siegel upper half space

Hn :=
{
Z = X + iY ∈ End(Cd)

∣∣ tZ = Z , Y > 0
}
,

which is the universal covering of the moduli space of principally polarized
abelian varieties. Due to an unavoidable clash of notations, we are forced here
to use the letters Z and Y again. Choose the trivial Cd-bundle over Hn as the
holomorphic vector bundle E and define the lattice Λ over a point Z ∈ Hd as

Λ|Z := (Z, id)Z2n

where (Z, id) denotes a Cd×2d-matrix. The polarization defines a Kähler form
on E; the associated metric is given by

‖Zr + s‖2|Z = t(Zr + s)Y −1(Zr + s) for r, s ∈ Zn .
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(one might scale the metric by a constant factor 1/2 to satisfy the condition
vol(Z) = 1. The torsion form is invariant under this scaling). The crucial
ingredient in the construction of γ in [K1] was a series β̄t depending on real
parameters t, b ∈ R, such that the Epstein zeta function Z(s) with γ = Z ′(0)
can be constructed as the Mellin transform of the b-linear term of β̄t. More
precisely,

Z(s) := − 1
Γ (s)

∫ ∞

0

ts−1

(
d

db |b=0
β̄t + cn−1(Ē)

)
dt ,

which also leads to other expressions for γ in terms of β̄. We derive the Fourier
expansion for γ by applying the Poisson summation formula to a lattice of
half the maximal rank in the Epstein zeta function defining the torsion form.
This leaves us with two infinite series which converge at s = 0, and another
Epstein zeta function for a lattice of half the previous rank. By iterating this
procedure log 2d

log 2 times one can actually gain a convergent series expression for
γ; compare [E, §8], where a similar procedure with 2d steps is described.

Set C := 1
πY

−1(1− 1
2πibReΩE), and D := 1

πY
−1 −i

2πib ImΩE . Thus tC = C,
tD = −D. Then by [K1, eq. (6.0)],

β̄t =
(
−b
πt

)d ∑
λ∈Λ

exp
(
−1
t

〈
λ1,0, (1 +

i

2πb
ΩE)λ0,1

〉)

=
(
−b
πt

)d ∑
r,u∈Zd

exp
(
−π
t

t(Zr + u)(C +D)(Z̄r + u)
)
.

Now let B be a symmetric integral d × d-matrix. The space b of such
matrices embeds into Sp(d,Z) via

B 7→
(

id B
0 id

)
.

The induced action of B ∈ b on H is given by Z 7→ Z +B. As β̄t is Sp(d,Z)-
invariant, it thus has a Fourier decomposition on the torus H/b. Notice that
the space c of frequencies does not equal b but is the space

c =
{1

2
(B +t B)

∣∣ B ∈ gl(d,Z)
}

of symmetric matrices integral along the diagonal and half-integral off the
diagonal.

Using the Poisson summation formula applied to u ∈ Zd we find for β̄t|Z
at Z = X + iY

β̄t =
(
−b
πt

)d ∑
r,u∈Zd

exp
(
−π
t

t(Zr + u)(C +D)(Z̄r + u)
)
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=
(
−b
πt

)d ∑
r,u∈Zd

exp
(
− π

t
t(Xr + u)C(Xr + u)

−π
t

trY CY r − 2πi
t

trY D(Xr + u)
)

=
(
−b
π
√
t

)d ∑
r,û∈Zd

1√
detC

exp
(
− πttûC−1û− 2πitûXr

−π
t

trY (C −DC−1D)Y r − 2πtrY DC−1û
)
.

For any symmetric A ∈ Rd×d and M = 1
2 (r ·t u + u ·t r) we have 〈M,A〉 =

TrM tA = trAu. Thus the Fourier coefficient of e−2πi〈M,X〉 for M ∈ c equals

∑(
−b
π
√
t

)d 1√
detC

· exp
(
−πttuC−1u− π

t
trY (C −DC−1D)Y r − 2πtrY DC−1u

)
.

In particular the occurring frequency matricesM in the Fourier decomposition
are among the matrices in c which have at most two non-zero eigenvalue. Note
that

C −DC−1D = C(Id− C−1DC−1D) = C(Id− C−1D)(Id + C−1D)
= (C −D)C−1(C +D) = t(C +D)C−1(C +D) (16)

and in particular for a ∈ Rd

ta(C −DC−1D)−1a = ta(C +D)−1(C ±D)t(C +D)−1a = ta(C ∓D)−1a

(this value does not depend on the choice of ±), or

2(C −DC−1D)−1 = (C +D)−1 + (C −D)−1 .

6.1 The coefficients of the non-constant terms

Proposition 6.1. Two vectors r, u ∈ Rd \{0} are uniquely determined by the
matrix

M :=
1
2
(r ·t u+ u ·t r)

up to order and multiplication by a constant.

Proof. Assume first that u and r are not colinear. The two non-vanishing
eigenvalues of M are given by

λ1,2 =
1
2
(
〈r, u〉 ± ‖r‖‖u‖

)
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with corresponding eigenvectors v1,2 = c1,2(‖r‖u ± ‖u‖r) with c1,2 ∈ R \ {0}
arbitrary. In fact,

Mv1,2 =
c1,2

2
(
‖r‖r〈u, u〉 ± ‖u‖r〈r, u〉+ ‖r‖u〈r, u〉 ± ‖u‖u〈r, r〉

)
= λ1,2v1,2 .

Now ‖v1,2‖2 = ±4c21,2‖r‖‖s‖λ1,2 and thus

v1,2

‖v1,2‖

√
|λ1,2| = ±1

2

(√
‖r‖
‖u‖

u±

√
‖u‖
‖r‖

r

)
Without loss of generality we may assume the sign to be positive; we then
have

v1
‖v1‖

√
|λ1|+

v2
‖v2‖

√
|λ2| =

√
‖r‖
‖u‖

u

and
v1
‖v1‖

√
|λ1| −

v2
‖v2‖

√
|λ2| =

√
‖u‖
‖r‖

r .

Thus all possible sets {u, r} of solutions are given in terms of M by{{
c
( v1
‖v1‖

√
|λ1|+

v2
‖v2‖

√
|λ2|

)
,
1
c

( v1
‖v1‖

√
|λ1|−

v2
‖v2‖

√
|λ2|

)} ∣∣∣ c ∈ R, c 6= 0
}
.

In the case r, u colinear the eigenvalue λ2 vanishes and the proof remains the
same with this simplification. ut

Remarks. 1) Note that λ1 > 0 and λ2 ≤ 0.
2) There is a simpler formula for r and u up to two possibilities in every

coordinate: Necessarily one diagonal element of M is non-zero, say M11. By
solving the system of quadratic equation 2M1j = r1uj + rju1, one finds up to
the scaling constant

rj = M1j ±
√
M2

1j −M11Mjj .

Alas determining the ±-choice in every coordinate is not easy.
3) In our case, the condition r, s ∈ Zd implies that for every M ∈ c there

are primitive vectors r0, u0 ∈ Zd and c ∈ Z+ such that all possible sets {r, u}
are given by {{kr0, c/k · u0}|k ∈ Z, k|c}.

Using the Taylor expansion of (1− x)−1 at x = 0, we find for the term in
the exponential function in β̄t,M with r = kr0, u = cu0/k

−πttuC−1u− π

t
trY (C −DC−1D)Y r − 2πtrY DC−1u

= −π
2c2

k2
ttu0Y u0 −

k2

t
tr0Y r0 +

t

k2

∑
l≥1

ωl

bl
+
k2

t

∑
l≥1

ω′l
bl

+
∑
l≥1

ω′′l
bl

(17)
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where ωl, ω
′
l, ω

′′
l are differential forms of degree (l, l), depending on M but not

on k. Thus β̄t,M has the form

β̄t,M =
∑

k∈Z,k|c

(
−b
π
√
t

)d 1√
detC(1 + δr0=u0)

(∑
l∈Z

(
t

k2
)lαl(b)

)

·
(

exp
(
−π

2c2

k2
ttu0Y u0 −

k2

t
tr0Y r0

)
+ exp

(
−π

2c2

k2
ttr0Y r0 −

k2

t
tu0Y u0

))
with αl(b) being a differential form of degrees greater or equal to |l|, with
coefficients in polynomials in 1/b. In particular, the sum over l is finite. Now
for a, b ∈ R+, α ∈ R the Bessel K-functions provide the formula

1
Γ (s)

∫ ∞

0

e−at−b/tts−1−αdt =
2

Γ (s)

√
a

b

α−s

K(α− s, 2
√
ab)

and thus

∂

∂s |s=0

(
1

Γ (s)

∫ ∞

0

e−at−b/tts−1−αdt

)
= 2
√
a

b

α

K(α, 2
√
ab) .

We define
‖M,Y ‖ :=

√
trY r · tuY u ;

by Proposition 6.1 we know that this value does not depend on the choice
of r and u. More easily, one can verify this using ‖M,Y ‖2 + 〈M,Y 〉2 =
2TrMYMY . Also we set

ρ(r0, u0) :=

√
tr0Y r0
tu0Y u0

.

Hence we find for the derivative at s = 0 of the Mellin transform of β̄t,M

∂

∂s |s=0

(
1

Γ (s)

∫ ∞

0

β̄t,M ts−1dt

)
=

∑
k∈Z,k|c

∑
l∈Z

αl(b)|k|−2l

(
−b
π

)d 1√
detC(1 + δr0=u0)

·2

√π2c2 · tu0Y u0

k4 · tr0Y r0

d/2−l

+

√
π2c2 · tr0Y r0
k4 · tu0Y u0

d/2−l
·K(d/2− l, 2

√
π2‖M,Y ‖2)

=
∑

k∈Z,k|c

∑
l∈Z

αl(b)
2cd/2−l(−b)d

πl+d/2|k|d
√

detC(1 + δr0=u0)

·
(
ρ(r0, u0)l−d/2 + ρ(r0, u0)d/2−l

)
K(d/2− l, 2π‖M,Y ‖)
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=
∑
l∈Z

αl(b)
2(πc)−d/2−l(−b)dσd(c)√

detC(1 + δr0=u0)

·
(
ρ(r0, u0)l−d/2 + ρ(r0, u0)d/2−l

)
K(d/2− l, 2π‖M,Y ‖)

with σm(c) :=
∑

k∈Z+,k|c k
m being the divisor function. For c =

∏
p prime p

νp ,
one finds

σm(c) = cm
∏

p prime

1− p−m(νp+1)

1− p−m

and thus σm(c) ∈ ]cm, ζ(m)cm[. The form γ is given by the linear term in b
in the above equation, for which |l| ≤ d− 1. Set

η(r0, u0) := e−2π‖M,Y ‖ρ(r0, u0)−d/2 exp
(
− cρ(r0, u0) · tu0(C−1 − πY )u0

−2πctr0Y DC−1u0 − π2cρ(r0, u0)−1 · tr0(Y (C −DC−1D)Y − 1
π
Y )r0

)
= ρ(r0, u0)−d/2 exp

(
− cρ(r0, u0) · tu0C

−1u0 − 2πctr0Y DC−1u0

−π2cρ(r0, u0)−1 · tr0Y (C −DC−1D)Y r0
)
.

The Bessel K-functions have for |x| → ∞ the asymptotics

K(v, x) =
√

π

2x
e−x

(
1 +O(

1
x

)
)

and thus we find for ‖M,Y ‖ → ∞ by setting t := k2

cπρ(r0, u0) in the defining
equation for the αl

∂

∂s |s=0

(
1

Γ (s)

∫ ∞

0

β̄t,M ts−1dt

)
=

(πc)−d/2(−b)dσd(c)√
‖M,Y ‖detC(1 + δr0=u0)

(
η(r0, u0) + η(u0, r0)

)(
1 +O(

1
‖M,Y ‖

)
)
.

For d odd the Bessel K-functions have special values, and one thus finds
explicit expressions for the Fourier coefficients similar to (18). Using the poly-
logarithm defined for |q| < 1, l ∈ R by

Lil(q) :=
∞∑

k=1

qk

kl
(18)

we have the equality for m ∈ Z+

∞∑
c=1

σm(c)
cl

qc =
∞∑

n=1

nm−lLil(qn) .
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Thus we obtain with

q(r0, u0) := exp
(
− ρ(r0, u0) · tu0C

−1u0 − 2πtr0Y DC
−1u0

−π2ρ(r0, u0)−1 · tr0Y (C −DC−1D)Y r0 − 2πitu0Xr0

)
the following

Lemma 6.2. When summing the part of the Fourier expansion corresponding
to frequency matrices which have the same pair of primitive vectors r0, u0, we
obtain with M0 := 1

2 (r0 ·t u0 + u0 ·t r0)∑
c∈Z+

e−2πi〈cM0,X〉 ∂

∂s |s=0

(
1

Γ (s)

∫ ∞

0

β̄t,cM0t
s−1dt

)

=
π−d/2(−b)dρ(r0, u0)−d/2√
‖M0, Y ‖detC(1 + δr0=u0)

·
∞∑

n=1

n
d−1
2

(
Li d+1

2

(
q(r0, u0)n

)
+O(

1
‖M0, Y ‖

)Li d+3
2

(
q(r0, u0)n

))
+ this same term with r0, u0 exchanged

=
π−d/2(−b)d√

‖M0, Y ‖detC(1 + δr0=u0)

∞∑
n=1

n
d−1
2

(
ρ(r0, u0)−d/2Li d+1

2

(
q(r0, u0)n

)
+ρ(r0, u0)d/2Li d+1

2

(
q(u0, r0)n

))
·
(

1 +O(
1

‖M0, Y ‖
)
)
.

Here polylogarithms of forms have to be interpreted via the power series
in equation (18).

6.2 The coefficient of the constant term

For M = 0 we find by applying again the Poisson summation formula to both
sums

β̄t,0 =
∑
r∈Zd

(
−b
π
√
t

)d 1√
detC

exp
(
− π

t
trY (C −DC−1D)Y r

)
(19)

+
∑
u∈Zd

(
−b
π
√
t

)d 1√
detC

exp
(
− πttuC−1u

)
−
(
−b
π
√
t

)d 1√
detC

=
∑
r̂∈Zd

(
−b
π

)d exp
(
− πttr̂Y −1(C −DC−1D)−1Y −1r̂

)
√

det(C(C −DC−1D)) detY

+
∑
û∈Zd

(
−b
πt

)d

exp
(
− π

t
tûCû

)
−
(
−b
π
√
t

)d 1√
detC

. (20)
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Using (16), we find

det(Y 2C(C −DC−1D)) = det(Y C + Y D)2

and (by Corollary 3.5)

1
det(πY (C +D))

= det
(

1 +
1

2πib
ΩE

)
=

d∑
j=0

(−b)−jcj(E) ,

and thus (20) simplifies to

β̄t,0 = θ1(t) + θ2(t)−
(
−b
π
√
t

)d 1√
detC

(21)

where

θ1(t) :=
∑
r̂∈Zd

(−b)d det
(

1 +
1

2πib
ΩE

)
exp

(
− πt · tr̂Y −1(C ±D)−1Y −1r̂

)
,

θ2(t) :=
∑
û∈Zd

(
−b
πt

)d

exp
(
− π

t
· tûCû

)
.

Note that the term −
(
−b

π
√

t

)d
1√

det C
vanishes under Mellin transformation

[K1, Remark on p.12]. The b-linear term of the second summand θ2(t) in (21)
is

θ2(t)[b] =
1

(d− 1)!

∑
u∈Zd

(
−1
πt

)d

exp
(
− 1
t

tuY −1u
)( 1

2πit
tuY −1ΩEu

)∧(d−1)

with Mellin transform

Z2(s)[b] :=

−Γ (2d− 1− s)
Γ (s)(d− 1)!

∑
u∈Zd

(
−1
π

)d

(tuY −1u)1−2d+s

(
1

2πi
tuY −1ΩEu

)∧(d−1)

,

and thus the corresponding summand of γ equals

Z ′2(0) =
(2d− 2)!
(d− 1)!πd

∑
u∈Zd\{0}

(tuY −1u)1−2d

(
−1
2πi

tuY −1ΩEu

)∧(d−1)

.

This term is homogeneous in Y of degree 2 − d; thus it behaves like |Y |2−d

for |Y | → ∞ or |Y | → 0.
By proceeding as in (17) we observe that the first summand θ1(t) in (21)

has the form
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θ1(t) =∑
r∈Zd

(−b)d det
(

1 +
1

2πib
ΩE

)
exp
(
−πttrY −1(C −DC−1D)−1Y −1r

)
=
∑
r∈Zd

(−b)d det
(

1 +
1

2πib
ΩE

)
exp

(
− π2ttrY −1r

)
· exp

(
− πttrY −1

(
(C −DC−1D)−1 − πY

)
Y −1r

)
=
∑
r∈Zd

(−b)d det
(

1 +
1

2πib
ΩE

)
exp

(
− π2ttrY −1r

)

·

(
1 +

d∑
k=1

k∑
`=1

t`(−b)−kωk,`

)
with ωk,` being a (k, k)-form, homogeneous in Y of degree −` − 2k and ho-
mogeneous in r of degree 2`. The coefficient of b in θ1 is given by

θ1(t)[b] = θ11(t) + θ12(t)

where

θ11(t) := −
∑
r∈Zd

exp
(
− π2t · trY −1r

)
cd−1(E) ,

θ12(t) := −
∑
r∈Zd

exp
(
− π2t · trY −1r

) d−1∑
k=1

k∑
`=1

t`ωk,`cd−1−k(E) .

The Mellin transform of this term thus equals

Z11(s)cd−1(E) +
1

Γ (s)
Z12(s) :=

∑
r∈Zd\{0}

(
π2 · trY −1r

)−s

cd−1(E)

+
∑

r∈Zd\{0}

d−1∑
k=1

k∑
`=1

Γ (s+ `)
Γ (s)

(
π2 · trY −1r

)−s−`

ωk,`cd−1−k(E)

which is homogeneous in Y of degree 2 − 2d + s. In particular the Mellin
transform of θ1 converges in (21) for Re s > d/2 when subtracting the r̂ = 0
summand (and similarly in (19) for Re s < 0 when subtracting the r = 0
summand). Notice that θ22(t) → 0 for t → ∞ and thus 1

Γ (s)Z22(s) → 0 for
s → 0. Hence ∂

∂s |s=0
1

Γ (s)Z12(s) = Z12(0). Furthermore Z11(0) = −1. Clearly
for α ∈ R+

Z11(s)|αY = αsZ11(s)|Y
and thus

Z ′11(0)|αY = − logα+ Z ′11(0)|Y .

Concluding we find
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Theorem 6.3. The differential form γ representing the torsion form verifies
for |Y | → ∞

γ = Z ′11(0)cd−1(E) + Z12(0) + Z ′2(0) +O(e−c|Y |) (22)

where Z11 is a classical real-valued Epstein zeta function; Z12 is a sum of
Epstein zeta functions with polynomials in the numerator; and Z ′2(0) is given
by a convergent series. The first term in (22) behaves like − log |Y |·|Y |2−2dc1+
|Y |2−2dc2, the second term is homogeneous in Y of degree 2−2d and the third
term is homogeneous in Y of degree 2− d.
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